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ABSTRACT

Some exact solutions for the time-dependent incompressible
irrotational flow of a fluid contained between two free surfaces
are presented. The free surfaces are either concentric circular
cylinders or concentric spheres. The cases where constant pres-
sures are applied at one or the other of the free surfaces are also
described, and the corresponding flows are analyzed for Taylor
instability of the freé boundaries. When the free boundaries are
concentric circular cylinders, flows with constant non-zero circu-

lation for circuits containing the cylinder axis are also described.
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1. INTRODUCTION

The exact hydrodynamic flows described in this report were found
incident to carrying out the analytical phase of a project entitled
"Ship-Wave Interactions" funded by the Office of Naval Research
under Task No. NR 334-003. So far as we know, these exact solutions
have not been reported elsewhere. We will say a little about our moti-
vation for finding these solutions in the next paragraph, but our reasons
for presenting them here in a separate report can be stated very simply:
To put before the numerical hydrodynamics community some simple, but non-
trivial, exact solutions of the non-linear equations for the motion of
a liquid with a free surface, which might be used to check the accuracy
of various numerical techniques for solving time-dependent hydrodynamic
free boundary problems.

Our reason for introducing the flows described here is an outgrowth
of a relation that has been found between turbulence and energy non-
conservation for inviscid flows. Details of that connection will be
reported elsewhere (Ref. 1). Briefly, for a hydrodynamic flow it turns
out that a convenient measure of the local turbulence of the flow is

given by the quantity

Q= %? ‘%’Po“‘?) SR [“G Po‘-‘a"'l’)] > (1.1)

where u(x,t) is the velocity field, p, is the constant liquid density, and
P is the pressure. The presence or absence of turbulence is characterized

by whether or not Q < 0 (more precisely, in a stochastic framework, by

whether or not Q < 0 "almost surely").

P P P T ELS NOPTATY peEry
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In the next paragraph, we will give an example of a flow with u - 1=

u ° 3 =0and u - k a function of z and t oﬂly, for which

Q = - 8(z-2) 6(t-to) . (1.2a)

A natural question which arises in this: 1Is there a hydrodynamic flow with

T i =0and u ° T, u . 3 independent of z, such that

Q= - §(x-%) 8(y-yo) 8(t-t5) , (1.2b)

and is there a flow with

-~

Q = = 6(x=%0) 6(y-yc) 6({z-20) “{t-t) (1.2¢)

Further, we may ask if somehow one cau exnre-3 gzenarci turbulent flows for
different numbers of independent spati=l ar‘av.-- in terms of superpositions
of non-turbulent flows and elemer*:: - * .ows with turbulence characterized by
(1.2a), (1.2b), or (l.2c). At thiz -vicving, we have not answered the latter
inquiry, and indeed there will be no need to answer it until our analysis
has proceeded to a more advanced stage. As regards the other question, in
this report we construct flows having properties (1.2b) and (l.2c) as
natural generalizations of the flow with Q satisfying (1.2a).

For a flow satisfying (l.2a), consider the hydrodynamic flow with ini-

tial conditions

( 0 0= |;| < z,
p(x,0) = loo 2z 2|z 24 (1.3a)
1 0 z, < |z|
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and

_l;(;,O) =-U-i<. sgn(z), Zq S‘z‘ <z .

Here U> 0. For 0 < t < E-l%’ we have

0 0 = |z] < (z - UY)
px,t) = { po (20 - UDs |z| sz - Ur)

0 (z - 1W< |z|

" and

u (;,t) =-Uk sgn(z), (zp -~ Ut) =< |z| <(z; - Ut).

For later times, we choose the flow that satisfies

(po 0= |z] sz - %)
p(x,t) = , £z =2
0 (2 - z)< |2
and
TJ(;,t)'O, 05‘2‘5(21-20): t>% .

For the flow given by (1.3)-(1.5), we readily find

Q= - po P(z-2) 8(2) 6(t-zﬁ9') .

5.

(1.3b)

(1.4a)

(1.4b)

(1.5a)

(1.5b)

(1.6)

This is a flow of type (l.2a); others may be found by shifting the origins

of space and time.

Let us make the following observation: 1Instead of (1.5), one might

choose the flow

0 0= |z| < uce- éﬁ)

~ 2o
0G0 = {po  U(t- ) s |zl < z- o +ue- D), £ 2

0 zl-zo+U(t-5l?-)<|z|

ot it i i ok
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and
Zo

W (%) = UK sgn(z), U(t- %°—) s |z| € 2,- 2o + U(CE- z—l‘,’-), £> = .  (L.7b)

For the flow given by (1.3), (1.4), and (1.7), Q = 0. We may think of

the flow (1.3)-(1.5) as '"perfectly inelastic', the flow (1.3), (1.4), (1.7)
as 'perfectly elastic'". There are, of course, various intermediate possi-
bilities. The reason we have focused on the flow (1.3)-(1l.5) is that this

is the flow that will be calculated by our water-wave algorithm (Ref. 2).
That is not a mandatory feature of our calculation, but it seems like a

good first approximation, and it is with that feature in mind that we have
analyzed stability and turbulence for the flows generated by the algorithm.
However, other numerical schemes may calculate instead the flow (1.3), (1.4),
(1.7), or possibly intermediate cases. The exact flows we present in this

report are not predicated on the assumption of inelasticity of '"collisions"

and will be of use whatever numerical scheme one may use. The only difference

will be in how the various flows presented here are to be "patched together"
at moments of "collision".

Like the flow (1.3)-(1.5), the flows to be presented in the next sec~-
tion have a free boundary consisting of two components unconnected to
each other. Furthermore, they are "one-dimensional" in the sense that the
velocities depend on only one spatial coordinate, if one uses cylindrical
or spherical coordinates. 1In most of the cases, there is only one non-zero
velocity component in an appropriate coordinate system. All the flows are
irrotational as well as incompressible. As a consequence, it turns out that

the "cylindrical" solutions have a greater variety than the '"spherical' ones

because of the possibility of having non-zero circulation for an irrotational

flow in a multiply-connected, but not simply-connected, domain.

- . W e

s i
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There are no rigid boundaries for the flows presented here, and in
addition the domains occupied by the moving liquid are bounded. It has

been seen (Ref. 3) that under such conditions the effect of gravity is

PURE SSUREREETE 5 GRS L

only to bring about an acceleration of the whole flow configuration in
3 the direction of the gravitational attraction. Thus, there is no loss of

generality in ignoring the effect of gravity in these flows. If there is

[PUSIE: NV SE

gravity present, the flows should be considered to be given in an appro-
priately accelerated system of coordinates. Of course, if one desires a
more stringent test of his solution algorithms, not only may he compute 3
the flow in the presence of gravity, but he may solve the equations in j
i a coordinate system for which the special solutions given here do not :
possess such a simple symmetry, In addition to accelerated systems,
such coordinates may be obtained by displacing the origin of coordinates
and moving the system in uniform rectilinear motion. Since, however, the

2 solutions given here are all relatively smooth, the demands made on a

; golution algorithm to duplicate them will be correspondingly limited,
¢ and the test on the algorithm afforded by comparison of the exact solu-

tion with the approximate one will be one of necessity, not of sufficiency.

L)
i i .
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2. DESCRIPTION OF THE FLOWS

For all the flows given here, the liquid occupies the domain
r(t) < r<n(L), (2.1)

where for three-dimensional flows r = (x?+y2+22)% and for two-dimensional
flows r = (x?+y2)%. The sets f; | |;| = ry(t)} and {; | l;l =1, (t)} are
called the inner and outer free surface, respectively. The cases we con=
sider are: (i) three-dimensional flow, zero pressure on the free surfaces;
(ii) two-dimensional flow, zero pressure on the free surfaces; (iii) three-
dimensional flow, pressure applied at one of the free surfaces; (iv) two-
dimensional flow, pressure applied at one of the free surfaces; (v) two-
dimensional flow with circulation, zero pressure on the free surfaces; and
(vi) two-dimensional flow with circulation, pressure applied at one of

the free surfaces,.

We caution the reader that, for economy of notation, the same symbol
may have different meanings in the descriptions of different flows. Of
course, if an equation appearing in one flow description is referred to
in another flow description, the symbols that appear therein will be con-
sistent,

THREE-DIMENS IONAL FLOW, ZERO PRESSURE ON THE FREE SURFACES

Since the flow is incompressible and irrotational, the velocity field
is derivable from a potential ¢ satisfying Ap = 0. Bernoulli's equation
is

1 P
9. +3 (99)? ™ (. 2.2)

where P is the pressure and py is the constant liquid density.




THE JOHNS HOPKINS UNIVERSITY 9
APPLIED PHYSICS LABORATORY .

LAUREL MARYLAND

We write

© = A(t) <r—1-t—t-)- . %) + B(E) . (2.3)

There are four conditions to determine A(t), B(t), ro(t), and r, (t): The

two kinematical conditions that points on the free surfaces remain there,

and r =

e
]

(2.4)

Sb|>
Sl

and the two dynamical conditions that the pressure on the inner and outer
frec surfaces be zero. Using these pressure conditions we get, on substi-

tuting equation (2.3) into (2.2),

4 7k A s e VIEAE
SR N o onta VT — 2.
A(.‘ri r()) r?::1+13+2r:; 0 (2.5)
and
A L shel K&, (2.6)
r? 1 2;{‘ . .

From the kinematical conditions (2.4),we get conservation of volume:

b
-: rp(t) - ro(t) = 13(0) - rg(0) =V 2.7)
': By combining equations (2.4)-(2.6) we also get conservation of energy:
°© (5 rit)) O (5@ "5 %ox\,) i Lok
-i It is easier to work with the equations in dimensionless form. In terms
of E and V above we can find a characteristic time
LH T —

i o,

;

eadiadh o

3
-
4
3
;
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8
e* =§3— . (2.9)
Letting
e R g d
T o* ’ Ro V173 ’ R, V173 ’ an
(2.10)
S A
g2 ik ?
we get
R -R=1, (2.11a)
1 1 1
e S 2,
Rb Ry e (AT
and
dv
E\'—L = 3 , (2.116)
where
Vi =R, (2.114d)

If we use (2,11la,b,d) to express o in terms of V,, we see that (2.1lc)
is an equation for v in terms of V. Let us consider a special solution for

which, at the origin of time, vt = 0, we have V; (0) = 1, or Ry(0) = 0. Then

we have

eV (1-(1-1/E)? )1/3
o

1 (g-1)¥°

T -%— de . (2.12)

There are two possible signs for the square roots in (2.12). We shall

specialize to the case where the positive signs are taken.
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11,
| We note the following limiting values of the integral in (2.12).
{
When v, = 1,
e
2 T -% (v, -1)%/® (2.13)
- Equivalently, : e/6
v - (5 ) +1, (2.14a)
LY 3
15 Ry = (V,-1)/2 o (%1‘)2/5 ) (2.14b) .
. 4 18
i
.o On the other hand, when v, — =, 1
1/3 [
! T - ivl , (2.15a) ;
J3 4
F
R, »w/3 T . (2.15b)
‘ In dimensional variables, 1
- PR 2/5
o ~ Ex/s (5 t\. as t{ 0 (2.16a)
. N
3 and
g3z
= A3 %\, t as tg4 o . (2.16b)

Apart from limiting values, we see that (2.12) gives R, as a monotonically

increasing function of T, which we denote by

R, = F(1) . (2.17)

Bl
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Now, suppose we have a general initial-value problem, with r, (0),
r, (0), and r, (0) given. From (2.4), (2.7), and (2.8) we compute V and
E. With R, (0) obtained from r, (0) and (2.10), we use (2.17) to compute

a "time" To > 0 such that

IO T LR

R, (0) = F(To) - (2.18) 4

If r, (0) > 0, the flow for t > 0 is given by

(t) =2 F (To+ —'t‘;) , (2.19)

* L
where t is given in (2.9). ro(t) is found from (2.7). If r,(0) < 0, the

flow for 0 < t < Tot* is given by

i dsiiirbets dhedb i itdiamiiiad

n(t) = v F <To - %) : (2.20)

with ro(t) given again by (2.7). For t > 1ot*, the case of "inelastic

collision" gives

n (t) = V3 (2.21a)

i it el s, St o it bl bl i i

and in the case of "elastic collision"

r(t) = VR F (-E; C To) . (2.21b)

In the former case, with Q given by (1.1), we have

Q = - 2M oy E 8(t-Tot™) 6(x) . (2.22)

In the latter case, Q = 0,

ki . i i S Tl
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TWO-DIMENSIONAL FLOW, ZERO PRESSURE ON THE FREE SURFACES

13.

The similarities with the three-dimensional case are so extensive that

we only indicate what changes need to be made in the equations above as we

go along.

In place of (2.3) we have

= A(t) fn —— + B(t) .
9 = A(E) 0 t—Es 4 B(E)
The kinematical boundary conditions are
to =2 and 1, =i
° " ro T

from which we get conservation of volume,

r(t) - ra(t) = 55(0) - r3(0) =V,

The conservation of energy is expressed by

£ (t) £, (0)
A%(t) 4n o (6) A2 (0) an =E .

The characteristic time is

Let

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

i e i L i it

U SRR DTS SNy S
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Then the equations assume the dimensionless form

R? o % = ] A, (2.293)
Rl 1 -
in =~ == 2,.29b ]
dv.
'E}'L =2 , (2.29¢)
where
nw=gK . (2.294d)

Consider the flow for which Vv, (0) = 1, Ry(0) = 0. 1In place of (2.12)

we get

\/ - X
1 1( ( 1
T = ——— 2 14+ ——- de , (2.30)
ZJZ- ‘1 \n g-]')/\ :

where, as above, we take the positive sign for the square root. This gives

R, as a monotonically increasing function of T, denoted by

sl mem i Gend oo decaliedie

R, = F(1) . (2.31) |

The following limits are of interest. When V, - 1,

1 1 ¥
T -ﬁ (ln Vx-'_1> -1, (2.32)
or i
My = 1% 2L s (2.33a) |
tn 7 |
Pk 1/2 |

Ro ~ ——TW‘_ . (2.33b)
(Ln

P . L g 2 ey !
II. o i il s L e e e Nt e S
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When V1 SN

In dimensional variables,

P 93/4 E1/4. t1/a

ro /
(=G

and

Suppose, in general, we are given r5(0), r, (0), and i1(0).

15.

(2.34a)

(2.34b)

(2.35a)

(2.35b)

From (2.24)-

(2.27) we compute V, E, and t*. Find R, (0) by (2.28), and then use (2.31)

to find 5 > 0 such that

R, (0) = F(To) .

For r, (0) > 0, the flow for t > 0 is

r, (t) = /3 FGo+ -t;) :

For r, (0) < 0, the flow for 0 < t < t* 7, is

i3t (t) - Vlla F (l'o' :_*') .

(2.36)

(2.37)

(2.38)

b & B il S R g

e (T T S
e o Shiae b e Zup i
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For t > t* 7, and r; (0) < 0, we get

r, (t) = W/ (2.39a) i
in the inelastic case, and
t 3
r, (t) = v"%‘(—;; - 19 (2.39b)

in the elastic case. In the former case,

Q=-T p, E 6(t-t*15) 6(x) . (2.40) ?

THREE-DIMENSIONAL FLOW, PRESSURE APPLIED AT ONE OF THE FREE SURFACES

The velocity potential is given by (2.3), and the kinematical conditions
at the free surface are still given by (2.4). Since the only quantity of
interest is the difference between the pressures applied at the inner and

outer surfaces, we have no loss of generality in setting the pressure at

the inner surface equal to zero. Let the pressure at the outer surface have
the value P, constant on the surface, Then equation (2.5) szill holds, but ;3

(2.6) should be replaced by

A ¢ o« 108 R
-1 +B4+o=+—=0, 2,41
I‘? 1 zrt Po ( )

The conservation of volume is expressed by (2.7). The conservation of energy

takes the following form when P, is independent of the time:

n
®
.

2 | 23 S4B H 2.5t
A NG © n(t)) il OB Ol v dies <0>>+ 355 O

.. . i
. e A b A A Gt St i ot ey
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Consider the case when €, as defined by (2.42), is > 0. This is
the case whenever P, > 0 and sometimes when P, < 0. Then let us write
¢ = E. Define t*, T, Ry, Ry, @, and W by‘(2.9), (2.10), and (2.114d).
Define T; by

Py
Po

m<

nl = . (2.43)

Then the governing equations are (2.11la), (2.llc), and

2
o %-i.) =1-3m (B-D) . (2.44)

For the flow with V; (0) = 1 (R, (0) = 0)

/2
v ( . ( ' -1. 1/3)
Pl g

1
rel 7 de . (2.45)
btk (-3m e)

We take the positive signs for the square roots. The behavior for small
time (r { 0) is given by (2.14a,b).
Two cases should be distinguished. In the first, P, > 0. 1In that

case the expression (2.45) for v fails for

3
V1 > §° s ] +"2'n_1' . (2.46)

Bl an daand

e i

o St L

. e
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Define t* by

3 1/3 1/2
14+ =—
* 2"1 ( e —) ) d

=3 o
& (1- 3 D)

£ . (2.47)

Then as ('r*-'r) } 0, we get

( /3 1/3
1+
33 2";> <?"1 %

~

v, ~ 1 +_2n1 -3™ (T -1)2 (2.48a)

o 2)" - ()
W (s _9_)"3

R, T % - 7). (2.48b)

@B @D

For 0 < 1 < ¢%*, (2.45) gives R, as a monotonically increasing function of T,

and

which we denote by

R, = F(1) . (2.49)

For the general initial-value problem, we have ry(0), r, (0), and
r, (0). From these, by (2.4), (2.7), (2.42), (2.9), (2.43), and (2.47),
we may calculate V, E, t*, T, , and T*, If T, 2 0, there will be a 1o € (0,1'*]

such that

R, (0) = F(7o) .

When 1, (0) > 0, the flow for 0 s t < t* (T*-15) is

r, (t) = vh FQ’O +%&) ’ (2.50a)

O et PR IVE DO - TR § G OOgnT Pt ety
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*
for t (t¥-10) s t< t*(ZT*-To) it is
- w/e *.r - L
l(t) - F|{2r =To t* ’ (2.50b)
and for t > t* (21%-1;) it is
r (t) = V/° (2.50c)
in the inelastic case. When EI(O) < 0, the flow for 0 < t < t*r, is
() =vwW2 F (To- -:-*‘) : (2.51a)
and for t > t* To it is
r (t) = V° (2.51b)

in the inelastic case. In the case of elastic collisions, these flows will
be time-~periodic with period 2t*r*, and Yo (t) will vary between O and
‘}ﬁs (j 3 \“h.

)

At this juncture, let us observe that one or the other of the free
surfaces will tend to exhibit Taylor instability at some point during the
flow, and hence the solutions with non-zero pressures imposed on the free
surfaces will be of rather limited physical interest. It follows from an

analysis elsewhere (Ref. 3) that we may expect Taylor instability at the

surface r = ro(t) if and only if

4
Fro(t)

<0 (2.52a)
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and Taylor instability at the surface r = r, (t) if and only if

2.52b
|r1(t) ( )
Note that we can write
sl Ak
p=6+p —0(B T | (2.53a)
To(t) ~ i (t)
where 0 is superharmonic and 8 = 0 at ry(t) and ry (t). Hence,
28 20 an ﬂ| <0. (2.53b)

_— d
Or 'ry(t) e or'r (t)

Accordingly, from (2.52) and (2.53), we will never get Taylor instability
at r = ro(t) when P, 2 0, or at r = r; (t) when P, < 0.

For the case we have considered so far, where P, > 0, if ;1(0) > 0 then,
because r; (t) is bounded above by Ve (1+-§%fxlﬂs, we must get ¥, (t) <0
for some t € (0, t*(T*-To)), and thus T;;lor i;stability at r = r; (t). An
explicit calculation, based on (2.2), (2.3), (2.44), and the known values

of Pat r = ro(t) and r = r, (t), yields

/
T B g I e M- 0wk )

(2.54%)

*
Define Ry, as the unique positive solution of

3 (R4S - Y

= ¢ @2y & 2mF @2 wP) . @255

2 ple (a(rie+1)’® - 3m%
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1/a
It is easy to see that 0 < R¥ < (~2ﬂ—> . For ry(t) > V:l/a Rc’,", we get
SALL

& Taylor instability at r; (t). If i'1 (0) < 0, then we do not get Taylor
’ﬁ
. 1 I /3 %
nstability at the boundary r = ry (t) unless ry,(0) > v Ro .
Consider the case where P, < 0 but ¢ in (2.42) is > 0. We may still
"a
oLl use equation (2.45). Define
i ( 1/a 12
1- (1- =
- e e (-0-87)
j T =% Y dg . (2.56)
L L @ne (1- S - 1))
- Then we will have V; t @ as t 4 * 'r+. This follows alsc Zrom the equation
of motion
' . 1 2P 3P o
Ty = SRt S e ———— a5 T ® , 2.57
. Po rlrl Po v b ( )
+
For 0 < 7 < 1, (2.45) gives R, as a monotonically increasing function of T:
: R, = F(1) . (2.58) :
= In the same way we derived equation (2.54), we find 1
- v 2, 2 3 1( 1
E o Or o(t) 30(1 ) m+ [1- 3™ (Rx—lﬂi Ro 111)( R0R1 ) { 1
bl (2.59) 14
-a 13
= It is easy to see that there is a unique positive solution R: of i 3
I 3 41y2h J
-m - 3(“3 Lo LD MPEYCRTLY NP, Jes ST, SR (2.60) )
f ¢ '

For ro(t) > V‘la R;', we get Taylor instability at ro(t).
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Now consider the general initial-value problem, where we are given rp (0),
r, (0), and 1, (0). From (2.4), (2.7), (2.42), (2.9), (2.43), and (2.56)

#
we cCompute V, E, t , W, , and T+. We find 79 € (0,T+) as the solution of

R, = F(To) - (2.61)

If ©,(0) > 0, the flow for 0 < t < t* (17-1,) is given by

r, (t) = v/2 F(T°+ %) ! (2.62)

For t 2 t* (T+-To) the flow is undefined. 1If fx(O) < 0, the flow for

0st< t*%o is given by
r, (t) = W3 F(ro- -E—;) . (2.63a)
In the inelastic case, for t > t* 7, we have
n(t) = ¢/, (2.63b)
and in the elastic case, for £ To <t < t* (T°f¢+) we have
r, (t) = v/ F(% = 79 : (2.63c)

Suppose finally that ¢ as given by (2.42) is < 0. We write E = -¢.

Define t*, 7, Ry, Ry, @, and V; by (2.9), (2.10), and (2.11d), and let
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v B |
mo-g (2.64)

The equations of motion in dimensionless form are given by (2.1lla), (2.1llc),

and

1 1 2
ag<§; - El. = -1 - 3’“1(R:1”1) . (2.65)
It is clear that for this flow, for all time,

3
Roz--Z—TT—.' (2.66) i

i Boed Nem WA U W TES W e

Thus, the liquid remains away from the origin, and we do not have the possi-

b 3
i bility of "collisions", either elastic or inelastic. i
Consider the flow with v, (0) = - E%- + 1: i

1 13

‘1 i
; y;\\lﬁa ]

Y (1- 1) f

1 Pk T -z) / dE . (2.67) {1
e 3 1 1/ 2 1/ : %

- 2 DR (-1 £y 5-) i

1

We take positive signs for the square roots. (2.67) gives R, as a monotone i

increasing function of rt:

R, = F(1) . (2.68)

As 7 § O we get from (2.67)

<:1 _ E%;;;ﬁs

- (2.69a)

d e B e =

(_2%1_7/;;((1_%3;)1/3 (531_ 1/3) p

e e ke e
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and
Ro—o (--—-

Define T+ by

T

e T

'_)/3<1'5ﬂ7

o e

G5y

+
o +L ()Y (1- 3™ G- 1))

Using (2.2), (2.3), (2.65), and the prescribed values of P at the

free surfaces, we get

4/3
v LI
E Po r
P 1
1 1
Rgno'&)

bt

= 4+ ~—=—

RS RoRy

o T B ) 2

It is clear from (2.71) that we get Taylor instability at the surface

r = ro(t) throughout this flow.

For the general initial-value problem, we are given ro(0), r, (0), an

r, (0). Using (2.4),

(2.7), (2.42), the equation E = - ¢, (2.9), (2.64), and

™ , and t+. We find To € [0,T+) as the solution

(2.70), we compute V, E, t*,

of

PR PSRN PR

Ry = F(75) .
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oy

If 1,(0) > 0, the flow for 0 = t < t* (17-15) is

Sacateans b o tand

r(t) = */® F <¢o +% . (2.73)

The flow is undefined for t = t* (T'=1o), If £,(0) <O, for 0 < t < t* 10>

[ EF Y

we have

5

r, (t) = Vl/:3 F G’o - %) (2.74a)

+
and for t* 1, < £t < t* (1o+1) ,

r, (t) = W3 F(:::_* . To) . (2.74b)

For t = t* (To+17) the flow is undefined.

TWO-DIMENSIONAL FLOW, PRESSURE APPLIED AT ONE OF THE FREE SURFACES

A

The velocity potential is given by (2.23) and the kinematical free sur-
face conditions by (2.24). We set the pressure on the inner surface equal to
0 and assume that the pressure assumes a value P, that is constant over the
outer surface r = r;. The conservation of volume is given by (2.25). When

P, is constant in time, the conservation of energy takes the form

Fod )

r,(t) p n(0) P
A® (t) ”“'E%'(T)'*BTI,' 3 (t) = A% (0) L"%W‘Fi r2(0) = ¢ . (2.75)

i

€ as defined here will be > 0 whenever P, > 0, and sometimes when

P, < 0. When € > 0, we set E = €. We define t*, T, Ro, Ry, @, and V;

ARD bt

L e

e

PR TR O TN PRI
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by (2.27), (2.28), and (2.29d). Let

v B
M, =z v | (2.76)

The equations governing the flow are (2.29a), (2.29c), and

@ Ln %%-= 1 - m (RB-1) . (2.77)

Let us examine the special flow with V; (0) = 1 (Ro(0) = 0):

1/3
v .__
1 pl ( 1+ )
(2.78)

W1 (1-m (5 1) N

T =

As usual, we take positive signs for all square roots. The behavior for
small T is given by (2.33a,b).
Suppose P, > 0. Then it is clear from the energy equation (2.77) that

V; will have an upper bound,

il Gl
€ =14 o c (2.79)
We define -r* by
i y/
= 1 Gn (1+ °
T ,- (2.80)
22 1 (1-m (g-1))°

As (T*-1) | 0, we get

vy~ l+

™ In(1+T)

(T*-7)? (2.81a)

e i

OV, TR g P g OO TR Ire

Sill oy gl e

il
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and

) Ln(l-HTJ.) i a8 (2 81b)

For 0 < ¢ < 7%, (2.78) gives R, as a monotonically increasing function of T,

which we denote by
R, = F(T) . (2.82)
As we have seen in the three-dimensional case, if we get Taylor instability

at all it will occur at the surface r = r, (t). Using (2.2), (2.23), (2.77), and

the prescribed values of the pressure on the free surfaces, we get

#3 1
E Po or I, (t)
£k
= _I—RT T -[1-m (8 -1)] -Rﬂ—?-’- - —}2- : (2.83)
Rl‘“i.? Ln 2L Rl/

We can check that there is only one positive root R¥ of the equation

n () &
-m, = (2.84)
£n<l+—i— + 1
Ro 2

* 1 \/2
and this root satisfies 0 < Ry < n_> .
1

Now let us consider the general initial-value problem, where we are

given x4 (0), r, (0), and i'l (0). Using (2.24), (2.25), (2.75), the relation
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E =¢, (2.27), (2.76), and (2.80), we find V, E, t*, W, , and t*. There

will be a 14 € (0,7*] with

R, (0) = F(Tp) .

If r, (0) > 0, the flow for 0 s t s t* (T*-15) is

r(t) = V2 F(ro +%;> (2.85a)

for t* (t*-15) < t < t* (21%*-1,), it is

t
and for t > t* (27*-70) it is
n () = v/ (2.85¢)

in the inelastic case. In the elastic case, for t* (21%-15) < t < t* (37*-1,),

we get
r, (t) = Ww/a p(f; - 21'*+T9 (2.85d)

and a flow that is periodic in time with period 27* t*. For these flows

%*

we will have Taylor instability at r = r, (t) whenever r,(t) > \ll/2 Ro, which

will eventually occur if r, (0) > 0. If r,(0) < 0, the flow for 0 < t < t* 7, is

() = /2§ (’ro i '21) (2.86a)

T,
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and for t > t* 1, it is
1, (6) = V2 (2.86b)

in the inelastic case. 1In the elastic case, for t* To < t < t* (T°+T*L we

have

r, (t) = V2 F(% - 79 ) (2.86¢)

and for t* (tott™®) <t < t* (T°+27*),we have
r (t) = V3 F(ZT*HO- %,;) ; (2.86d)

the flow being periodic in time with period 2t* *. In the inelastic case
we will not get Taylor instability at r = r, (t) if 51(0) < 0 and ro(0) <
v Ry. Otherwise,at some point in the flow Taylor instability will occur
on the outer surface.

Next we suppose that € in (2.75) is > 0, but P, < 0. Equation (2.78)

still holds and gives R, as a monotonically increasing function of T:
R = F(T) s (2.87)

for 0 < 71 < ®, From (2.78) we see that,when V; t ©,

- L( 1)‘/2 n v, (2.88a)
% L
2z ¥ ™
or
VZ (-1 )21
R]_ - e . (2.88b)

ikt sk

ki
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We can also verify this directly from the equation of motion,

A 2
ry = - =— =— - ~=—— P, r as r, { =, 2.89
1 oo af\rl e 1 ( )

As we have seen, Taylor instability can only occur at the inner boundary.
By using (2.2), (2.23), (2.77), and the prescribed values of P at the

boundaries, we find that

\ Lol
E Po 9T ry(t)
1 1 1 1 1
= W, +[ 1= R2-1 S _.-.._>_._ R 2.90
zn R1 1 [ 1( °8 )] I% % R? ™ R? ( )

There is a unique positive solution,R; of the equation

( _L.> < I 0 . |
1+ In1+ c—_—=aT (2.91)
g R/ R

For ro(t) > /2 R;', we will get Taylor instability at r = rg(t).
In the general initial-value problem we are given ry(0), r, (0), and
r, (0). We use (2.24), (2.25), (2.75), the equation E = €, (2.27), and

(2.76) to find V, E, t*, and 7,. We find To € (0,*) such that

Ry (0) = F(To) .

1f 1, (0) > 0, the solution for t 2 0 is

r, (t) = Wap (wo + -z—*-> . (2.92)

P e g

TR I T T v ST

o

O WA

e




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY 31. j

LAUREL MARYLAND

If ©,(0) < 0, the solution for 0 < t < t¥ 7, is 1

i e omm wmm

r(t) = W3 F (ro L -:—*) , (2.93a) 1 ;

and for t > t* 7o it is ;

=4

n(t) = v/ (2.93b)

in the inelastic case. 1In the elastic case, for t > t* 70, we have

r, (t) = /3 F(E; - ¢°> . (2.93¢)
'\t

There will be no Taylor instability in the inelastic case if ;1(0) < 0 and
to(0) < V 2 Rg; Otherwise, at some point in the flow,we will get Taylor ;
instability on the inner surface.

Now suppose € in (2.75) is < 0. We write E = - €, We use (2.27), (2.28),

: and (2.29d) to define t*, T, Ry, R,, @, and V,, and we let

A
D -

- :-V- 21. X
m, E o 5 (2.94) :

In dimensionless variables, the equations of motion are (2.29a), (2.29c), and

@ 4n % =-1-m(R-1) . (2.95)

We must have R3 2 'i%- , and thus we cannot have "collisions" of liquid at
1

the origin.
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Let us examine the special flow with V, (0) = 1 - %—. We get
1

Sl & (e 2",

27 . ;_ (-1-m, (E-1))V/2

LY

(2.96)

and taking positive signs for the square roots, this gives R, as an increas-

ing function of 1 € [0,):

R, = F(1) . (2.97)

The asymptotic behavior as T t » is given by equation (2.88).

The behavior as 7 { 0 can be obtained from (2.96):

- NI L N
W 1S5 - g o (2.98a)
and
1/2 -nl)a/2 .
( ﬂl) A (2.98b)

To study the stability of the surface r = rp(t), we use (2.2), (2.23),

(2.95) and the prescribed values of P at the boundaries to get

vk 1 3p

E Po  OT' gy (t)

g liGaEl e
n
RS

5

RZ Ln

and this is < 0 throughout the flow. Thus, we get. Taylor instability at
r = ro(t).
To solve the general initial-value problem, we suppose that we are

given 1o (0), 1, (0), and r, (0). We use (2.24), (2.25), (2.75), the equation

= 2 (. 27), and (2. 94) to compute V, E, c » and T . .We find 7o € [0,

ﬂ F PO, W

AT P T

T I PR

S R A
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P ISR AE CIE FNS U S -

8o that

Ry (0) = F(To) .

Then, if r, (0) > O, the flow for t 2 0 is given by

n (e = W3 F (wo + %) ) (2.100)

R i e sl LRk Sl

If 1, (0) < 0, the flow for 0 < t < t* 7, is

r, (t) = w2 ("o - ‘E‘;) ’ (2.101a) ]

t b

]

and for t = t* To ;
r (t) = V“/2 F(-E; - 'ro) o (2.101b) 3

e sy

TWO-DIMENSIONAL FLOW WITH CIRCULATION, ZERO PRESSURE ON THE FREE SURFACES

R S

In place of the velocity potential (2.23), we have :
= A(t) fn —=—= + C 6 + B(t) , 2,102
® = A(t) 40 TV (t) (2.102)

where © is the azimuthal angle. The important case is where C is independent
of time as well as space. The kinematical boundary conditions are still given ]
by (2.24). The dynamical boundary conditions are obtained from (2.2), (2.102),

and the fact that P = 0 on the free boundaries:

s X0 _A « . 1A%+
A fn T - T, ry + B + 5 -;g—' 0, (2.103a)
LA » 1A%+ 2
r,r1+B"'i' 2 0. (2.103b)




e . P e RO T TS e W CU NI PRI TDTR TR

THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY

LAUREL MARYLAND 34 .

From the kinematical conditions, conservation of volume follows as

in (2.25). For the conservation of energy, we get

t 0
(A% (£)+C°) £n E&%E% = (A% (0)+C°) £n ;i%a% =E . (2.104)

We may use (2.27), (2.28), and (2.29d) to definme t*, 7, Ry, R,, @,

and V, . Further, we let

g/2 - (2.105)

The governing equations are (2.29a), (2.29c), and
Ry
©?+Y?) 4n e 1. (2.106)

Since Y is constant, it is clear from (2.106) that we cannot have R, = 0.
Thus, these flows will never exhibit ''collisions'. The minimum possible
value of Ry will be achieved when io =A=aoa=0:

R
Y in = g ] = vy

= (2.107)

=-—-—1——.
1-e-2/Y2

Let us consider the flow for which v, (0) is given by (2.107). Then we

get

¥ in ( 1+ E}.—l-) \1/2

= T |

2/2 ‘iz/y? 1-7;— zn(1+ E%’/ =
l-e”

(2.108)

i, S S

Rl it s G M it o' i g e il e s e j
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35. 4

In this equation we take the positive sign for the square root, and thus

we get R, as a monotonically increasing function of T:

R, = F(1) . (2.109) ;

E

3

E

From (2.108) we may obtain the behavior as T !} 0: -
(SREIEP RN 1

v, - —1——+2i e’-’z e Y @, (2.110a)

Leg 2/Y? :~

-e ¥

(1 1)5/2
,e?-e i ~© . (2.110b)

The asymptotic behavior as T t « is given by (2.34).

Now, suppose we have rq (0), r; (0), and QI(O). From (2.24), (2.25),
(2.194), (2.105), and (2.27) we find V, E, ¥ and t*. We find 175 € [0,%) 1

such that

R, (0) = F(To) .

debatia e

If £, (0) > 0, the solution for t 2 0 is given by

bl s S T S

n (t) = W2 F(To +5,9 . (2.111)
t q
1f £, (0) < 0, the solution for 0 < t < t* To 18
. i {
r, (t) = VW2 F(To £ :9 (2.112a) i

ve and for t 2 t* To

(2.112b)

t ]
ot
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TWO-DIMENSTIONAL FLOW WITH CIRCULATION, AND PRESSURE APPLIED AT ONE
OF THE FREE SURFACES

We treat now the case where there is circulation, ard, as well, a
pressure Py, which is constant over the surface, is applied at the inner
boundary. The pressure at the outer boundary is taken to be O.

The velocity potential is given by (2.102). The kinematical boundary
conditions and conservation of volume are given by (2.24) and (2.25). For
the dynamical boundary conditions, we insert (2.102) into the Bernoulli

equation (2.2) and get

r A 1 A%4C2
Atn=-2 & +B+5=-"=+ —=0, 2.113a
S 2 g2 Po ‘ )
B - . 1 A%+C°
-=—1 +B+53 =0 . (2.113b)
I, 2 g2

The expression of conservation of energy assumes the form

t P 0 P
(A% (£)+C?) 4n zlét; % 3 (t) = (42(0)+) £n :::0; pz 3(0) =€ . (2.114)

If Py < 0, € will be > 0. There will also be cases when € > 0 and
P, > 0. So first we consider ¢ > 0 and set E = €. We define t*, r, Ry,

Ry, @, Y, and V; by (2.27), (2.28), (2.105), and (2.29d). Let

v b
e = < =2 2,115
(o] E Po ( )
The equations governing the flow are (2.29a), (2.29c), and
Ry 5
(@?+Y3) In o 1+ T (RE-1) . (2.116)

it el i Bt i e e it e i
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.

Since Y 1is constant, we cannot have R, = 0, and there will be no '"collisions".

The minimum value of Ry will be achieved when o = 0:

Y? 4n %% =1+Ty R§ . (2.117)

s s

When My = 0 there will be one and only one root Ry > 0 of (2.117). We }
call this root Ry (Y,Mg). For this case, the flow will have ry(t) 2 V]'/?'RO(Y,TTO).
Given Y and Ty < 0, there may be 0, 1, or 2 roots Ry > 0 of (2.117). 1If

there are no roots,

R
Y2 in §% > 1+ T, RS

for all Rp > 0. On the other hand, from (2.116), for any real flow ]

q
|
Ry 2 |
Y 4n — <1+ Ty RS , E
Ro |
1
and thus for such flows equation (2.117) will have 1 or 2 roots. We easily
check that if (2.117) has just one root, we must have
%i-En (}+ L j) =1+, RB(0) (2.118a)
R3 (0)
and |
2
= *#Wg (2.118b)
2R3(0) R{(0)
from which we get
1
AQ) =0 (2.119a) |
and, on combining (2.113a) and (2.113b),
A(0) =0 . o (2.119b) ]
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In this case, the flow is steady, and the negative pressure P, on the
inner boundary is just sufficient to balance the centrifugal force of the
swirling motion. So we may consider the case where (2.117) has two
distinct positive roots. We call them Rél)(Y,ﬁo) and Réz)(Y,ﬂo), with

(1)

Ro “the smaller root. Thus, the flow will satisfy

W2 RED (v,M0) < ro(t) = W2 RED (v,To) (2.120)

for all t = 0.
A more complete description of the restrictions imposed on -T; and
Y% by the requirement that (2.117) have at least one solution is as follows:

We must have, for 0 < - Ty, < ® and 0 < Y* < o,

0 < ¥? < G(-Ty) (2.121a)
and

0<-T =6 (V) , (2.121b)

where the curve Y2 = G(-T,) or - Ty = G-I(Yz) is given parametrically by the
equations
. 1
gf4e) gn (14 1)+ 1)
n - 3
\ (** )

-

41 (2.122a)

and

g 1
2 1 1
Jln(1+ g) + m

for 0 < g < @, We see that

(2.122b)

Fe <o, H(P) o,

- i L e e R
TPRPENEIS TS PERRVaI) T sl cnitiiabions il -
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|
F and hence
4 -l
9—%}l<o, £l—S;ﬁ)-<o, 0<x<w, (2.123)

From (2.122) we obtain

1
G(x) n as x 0 (2.124a)
and
2
G(x) - TR as  x t®; (2.124b)
also 13
Y
i ¢ty ~2e2/® 4 xio0 (2.125a) §
and Vg
¢l x) - a8 xte (2.125b) '.
2x - .
2 i
Now for My < 0, let us consider the special flow with V, (0) = (Rél)) + 1. ;
We get ‘s
. Va :
1 4! in (1+ -g—}_l. 4
‘ s _z/' 4 : - dg . (2.126) ]
2 (1).°2 ( 1)
(R3™7) +1\1 + o (§-1) = = fn{1+ g5
‘ Taking the positive square root, we see that (2.126) gives R, as a monotonically :‘,i

increasing function of 1 for 0 < 7 < 'r* .

1 R, = F(T) (2.127)
where v
: (2),2 \ 2
(Ro ") +1 1
: 74 ks el to(1+ 1) o€ 2,128
2/2 2 4+ 1) < X a1+ 2 ] el
iy w1 N\ oD " s “( %—1).
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As T | 0, we have

r .
YQ "n' = Y2 ( 1 1 " Ta
; B - (2.129a)
14 @82 L7 2 Ny (Ré‘))aﬂ)-

v, ~ D 41+

and
-

) 1) ¥ [ ﬁ( k. . - D 2
R - Ro My + | =5 (2.129b)
"D ey L TN @y w0

At the other end of the range, we find the behavior as (T*-T) { 0:

i
v, ~ @)+ --—-—*a———

Yz 1 : ‘] * (2
= (t7=7)
14T, ( 3))2 (( 2))8 (2))2+1) -, (2.1308)
and
(2) Y [ Y2< 1 1 >] *__\2
Ro ~ Ro & - Ty = o=— - (T7=1)°. (2.130b)
288 (1476 (RE™)?) 2N®EDy» @

If we get Taylor instability, it will occur at the surface r = r; (t).

From (2.2), (2.102), (2.116), and the known values of P on the free boundaries,

we find
a ‘
:a/ arl -1 = | “ToH 1470 (B -1) ] e u (2.131)
o r(t) R 4n - B
Ro In 5 R

As in the case where there was no circulation, there is a number, R:, dependent

only on -y, 0 < Rga < - T];—; » such that the expression in (2.131) is

*
negative for Ry, < Ry and positive for Ry > R: R: satisfies

(2.132)

e

ey aadiie i

PRy L E s O Ry

T Dy ORI
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The question of Taylor instability thus depends on the relation of

R:(-no) to Rél)(y,no) and Réa)(y,no). We see from (2.117) that as ¥° § 0

we get -1/2 .
11 1
RV y,m) = e 2Ya<e?- e ?> -0, (2.133)
as in (2.110b). And
Y2
&2 (v,7) - Qr.lr_ . (2.134)
(o]

We recall that the expression

%i 4n (%+-§> - 1-15 &

vanishes when € is (Rél))a or (3539)2 and is negative for (Réz))z <g<
(Réz))z. Hence, differentiating with respect to £ at (Rél))a and (Réa))a,

we get that

o

s ey
26 (1+€)

is negative at (Rél))2 and positive at (Réa))a. Now differentiate (2.117)

with respect to Y° when R, is Rél) or R§22 We find

aREM (v,o)
SSge—— (0 (2.135a)
and
3R (v,10)
g <0. (2.135b)

q #
X
-4
1l :
- A e e N R B s g At R e e g i S e e
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Sao as Y’ increases from 0 to G(-T,), the interval(}él), Réi) shrinks
33 %
from (?, (} %;;) ;) to a small neighborhood of R,, where R, satisfies

(2.118) with Y® replaced by G(-Ty). It is easy to see that

£ > RY . (2.136)

For, as we saw in (2.119), the corresponding limiting flow is stationary,
and the only acceleration of fluid elements at r = V*/2 (B+1)*2 is the
centripetal acceleration inward, which can only be caused by a positive
value of %% at that point. As Y? increases from 0 to G(-T,), it will

cross a value H(-Ty) such that

Rgl) ( (HCTE)Y2,mo) = Ro . (2.137)

For 0 < Y < H(-Ty), the surface r = r, (t) will be stable when V"a Rél)(Y,ﬂo)
£ ro(t) < VW2 R* and unstable when V2 RY < ro(t) s thkéz)(Y,“o). For
H(-Tp) < ¥* < G(-Tp), the surface r = r, (t) will be unstable throughout

the motion. We may compute H(-Ty) from (2.137), (2.132), and (2.117). The

result is

H=2 (1-T,) RY? , (2.138)

For the general initial-value problem, with P, < 0, let us suppose we
have given ro(0), r,(0), and r, (0). We use (2.24), (2.25), (2.114), the
equation E = ¢, (2.105), (2.27), (2.115), and (2.128) to find v, E, v, t*,

My, and *. Using (2.127), we find 7o € [0,7*] such that

Ry (0) = F(T0) .

e

i s e
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1f £ (0) = 0, the flow for 0 < t < t* (t*-15) 1s given by
ry (t) = VW3 F(\'o + f;) ; (2.139a)
for t¥(r*-15) s t s t* (21%-10), by :
r, (t) =3 F é'f*""o‘ -:—*-> H (2.139b)
for t* (21*-rg) < t < t* (31%-10), by
7
n(t) = VI/2 F (—E’; = 2'r*+r°> ; (2.139c¢c) ]
and in general, by 3
r, (t) = r, (t42t* %) | (2.139d) {
1f #,(0) s 0, for 0 s t < t* 1, we have
n(t) = VAF (7, - %;) ; (2.140a)
for t*ry < t s t* (ro+1%),
r,(t) = v"%(-:-,; - ‘I’o) ; (2.140D)
for t* (1'°+1-*) stst” (1'°+2'r*),
rn(t) =vRr (2t* 41, - -:-;) ; (2.140c)
i and, in general, we have the periodicity (2.139d).
5 - . " oy Rl oo b oo P
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Suppose now that ¢ given by (2.114) is > 0 but P, > 0, As we have
seen, there is one positive root Ro(Y,Mp) of (2.117). Consider the special

flow with V; (0) = (Ry(Y,T))? + 1. Then

V1 ln (1+ _Ll- L /2
T = —1- J' g-1. ; d§ . (2.141) ,
27 (o (¥,T03)?41 \1#To (8-1) £ ‘“(“ g—l)

If we take the positive square root here, we get R, as a monotonically increasing

function of 1 for 7 > O: 3

R, = F(1) . (2.142) 3

The behavior as 71 | 0 is

YB<§o+ ¥ T)
2(Ro (Y5T0))2 ((Ro (Y,T0 ) )3+])
V; = (Ro(Y,Mo))3+1 + 1,  (2.143a)

1+ TTO(RO(‘Y,TTO))2

7 ),
% G‘° ¥ 2(R (¥,100)% (R (Y10 0)°¥D) 2

Ro = Ro(Y,Tp) + (2.143b)
2Ro (Y570 ) (1476 (Ro (Y,TT5) )?)
As T t = ye get
V2o |
R, = e s (2.144)

Regarding Taylor instability, it will occur only at the inner boundary, :
r = ry(t). From (2.2), (2.102), (2.116), and the known boundary values of

P, we find
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P iéf -
v/3 1 ap 1 g ¥
cnme— — mme— B e My + 147, Ra"l o . ',.145
5 By T E e ¢ o " (5 —x (2.145)
Ro \ ]

As in the case without circulation, we find a unique R:, dependent only

on Ty, with 0 < Ry < ® and

) Py s 1
(}+E’} in €+ g2 -Rz_a Ty & (2.146)

When rg(t) < VI/2 Rg, we get no Taylor instability. When rg(t) > VI/2 Rg,
we get Taylor instability at r = rg(t).

So the only question is the relation of R: to the lower limit Rg (Y,To)
of the inner dimensionless radius. It is easy to see from (2.117) that we

have

Ro(Y,Mo) $ 0 as ¥ 1 0 (2.147a)
and
Ro(Y,Tp) ' ® as ¥° to, (2.147b)
As Y2 increases from 0 to », it will cross a value K("p) such that
+
Ro (K(T5),T5) = Ro . (2.148)

From (2.148), (2.117), and (2.146), we get

K = 2014873 . (2.149)

When ¥® > K(Ty), the surface r = rg(t) will be unstable during the whole

motion,

TRV S N
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Now consider the general initial-value problem, where we have rq(0),
1, (0), and £, (0). From (2.24), (2.25), (2.114), the equation E = ¢,
(2.27), (2.105), and (2.115) we compute V, E, t', Y, and Ty. We find

70 € [0,®) such that

Ry (0) = F(To) .
I1f 1, (0) 2 0, the fiow for t 2 0 is given by
r,(t) =2 F (\’o +-:-,;j . (2.150)

If & (0) < 0, the flow for 0 < t < t* 7, is

r, (t) = weplq, - %\ (2.151a)
and for t =2 t* To
L, (t) =3 F (%; - 703 ] (2.151b)

Finally, we consider the case where € as given by (2.114) is < 0.
Write E = -¢. Then we use (2.27), (2.28), (2.29d), and (2.105) to find t*,

T, Ro, Ry, @, V; and Y and we set

ﬂo = - i~ ] (20 152)
The governing equations are (2.29a), (2.29c), and

©@P+y2) Ln% =-1+mM(R§-1) . (2.153)

o

O e

g o
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[ For this flow we must have Ry, 2 F,(Y,M,) where R, is the unique positive
solution of
L Lon(el\a-14n, @ . (2.154)
2 ) |
Ry
It is clear that t
12
B ¢t{ = when Y2 L O, (2.155a)
To J
B te when Y te, (2.155b)
and
dfo
— 20. 2.155¢ i
de ( ) 1

Consider the flow with V, (0) = (K, (Y,M))° + 1. We get

v o 1 . vz
-y ‘“(”;_-1'.

I T

v 4
22 B+1 \-1475 (§-1)- 32& Ln (}_+ ﬁ}/

de . (2.156) 1

This equation, with positive square roots, determines R, as a monotonically

increasing function of T for T € (0,®): f
:
As 7 | 0 we get

Ve N i

N *
2R (R2+1) . |

v ~RB+1+ T T , (2.158a)
In{ 14+ =

.o . g/
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Y2
o + mmmeeeee
2% (B +1)

( R

As T t ® we have equation (2.144).

(2.158b)

The Taylor instability at the surface r = ro(t) is checked by using
(2.2), (2.102), (2.153), and the given values of P at the inner and outer

surfaces:

T
22 Lo2e 1 U [-1- - —E—,-\—( RF-) U (2.159)
&9 R3

and this is negative, giving us instability at r = ro(t), throughout the

flow.

For the general initial-value problem we use ro(0), r, (0), and t, (0)
to compute V, E, t*, v, and T, from (2.24), (2.25), (2.114), the equation
E = -¢, (2.27), (2.105), and (2.152). From (2.157) we find 14 € [0,®) such

that

Ry (0) = F(To) .

1f £, (0) = O, the flow for t 2 0 is

/ t
T, (t) = v”FCro +F) : (2.160)

1f %,(0) < O, the flow for 0 < t < t* 10 is

n(t) = v F<“'o - -t-;\ ; (2.161a)

and for t 2 t* To»

r, (t) = /3 F({-; - To) . (2.161b)

g
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